Blockchain-based Vehicular Ad-hoc Networks (VANETs) for Secure Connections: Challenges and Innovations

Vehicular Ad-hoc Networks (VANETs) have emerged as a promising technology for improving road safety, traffic efficiency, and passenger experience. However, ensuring secure and reliable communication among vehicles and infrastructure poses significant challenges. Blockchain technology presents a potential solution for enhancing the security and privacy of VANETs. This conference aims to gather researchers, practitioners, and experts to discuss the challenges and innovations in implementing blockchain-based VANETs for secure connections.

Objectives:

The main objective of this conference is to provide a platform for participants to exchange knowledge, share research findings, and explore the advancements in utilizing blockchain for secure connections in VANETs. The conference aims to achieve the following objectives:

- Explore the potential of blockchain technology in enhancing security, privacy, and trust in VANETs.
- Discuss the challenges and limitations of implementing blockchain-based solutions for secure connections in VANETs.
- Present innovative blockchain-based architectures, protocols, and algorithms for VANET security.
- Showcase real-world case studies and pilot projects of blockchain-based VANETs.
- Identify future research directions and potential applications of blockchain in VANETs.

Potential Topics:

- 1. Blockchain-based authentication and access control mechanisms for VANETs.
- 2. Privacy-preserving communication and data sharing in blockchain-based VANETs.
- 3. Consensus mechanisms and transaction validation in blockchain-based VANETs.
- 4. Blockchain-based solutions for secure message dissemination and routing in VANETs.
- 5. Trust management and reputation systems for blockchain-based VANETs.
- 6. Scalability and performance issues of blockchain-based VANET architectures.
- 7. Integrating blockchain with emerging technologies (e.g., AI, IoT) in VANETs.
- 8. Regulatory and legal challenges of implementing blockchain-based VANETs.
- 9. Secure software and firmware updates using blockchain in connected vehicles.
- 10. Blockchain-based solutions for securing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications.

Name of Proposer's

1. Dr. Gagan Vishwakarma

Assistant Professor, Computer science & Engineering, Indian Institute of Information Technology Bhopal MP

2. Dr. Sami Ahmed Haider

Glasgow College, University of Electronics Sciences and Technology of China

3. Dr. Salman Saadat

Systems Engineering Department, Military Technological College, Oman.